Closed minimal surfaces of high Morse index in manifolds of negative curvature
نویسنده
چکیده
We use Bott’s equivariant Morse theory to show that compact Riemannian three-manifolds with negative sectional curvature possess closed minimal surfaces of arbitrarily high Morse index. 1 Sources of noncompactness for parametrized minimal surfaces In this article, we apply the theory of parametrized two-dimensional minimal surfaces in a compact n-dimensional Riemannian manifold (M, 〈·, ·〉) to the case in which M has strictly negative sectional curvature. We begin with a discussion of how this case fits within the general theory of parametrized minimal surfaces in Riemannian manifolds, as presented in [10]. A parametrized minimal surface of genus g in a curved n-dimensional Riemannian manifold M is a critical point of the two-variable Dirichlet energy E : Map(Σg,M)× Tg → R, where Σg is the compact connected oriented surface of genus g and Tg is the Teichmüller space of marked conformal structures on Σg. This two-variable energy E is defined by the Dirichlet integral,
منابع مشابه
Instability of constant mean curvature surfaces of revolution in spherically symmetric spaces
We study the stability properties of constant mean curvature (CMC) surfaces of revolution in general simply-connected spherically symmetric 3-spaces, and in the particular case of a positive-definite 3dimensional slice of Schwarzschild space. We derive their Jacobi operators, and then prove that closed CMC tori of revolution in such spaces are unstable, and finally numerically compute the Morse...
متن کاملCertain 4-manifolds with Non-negative Sectional Curvature
In this paper, we study certain compact 4-manifolds with non-negative sectional curvature K. If s is the scalar curvature and W+ is the self-dual part of Weyl tensor, then it will be shown that there is no metric g on S2 × S2 with both (i) K > 0 and (ii) 1 6 s−W+ ≥ 0. We also investigate other aspects of 4-manifolds with non-negative sectional curvature. One of our results implies a theorem of ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملMinimal Surfaces in Geometric 3-manifolds
In these notes, we study the existence and topology of closed minimal surfaces in 3-manifolds with geometric structures. In some cases, it is convenient to consider wider classes of metrics, as similar results hold for such classes. Also we briefly diverge to consider embedded minimal 3-manifolds in 4-manifolds with positive Ricci curvature, extending an argument of Lawson to this case. In the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017